IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 8831-8850

The web bridge

Riccardo Barsotti ?, Salvatore S. Ligard ?, Gianni F. Royer-Carfagni ®*

& Department of Structural Engineering, University of Pisa, Via Diotisalvi 2, I-56126 Pisa, Italy
® Department of Civil Engineering, University of Parma, Parco Area delle Scienze 18114, I1-43100 Parma, Italy

Received 21 June 2000; in revised form 2 May 2001

Abstract

Optimal cable arrangements for tensile structures, for bridges in particular, are determined by drawing inspiration
from the wrinkling behavior of flat elastic membranes stretched in their plane. The underlying rationale for the ap-
proach consists in the fact that wrinkle patterns naturally develop according to a “maximum-stiffness” criterion. By
way of illustration, a two-dimensional theory is proposed to model the wrinkling phenomenon in membranes subjected
to general in plane loading, and an iterative procedure is then presented for solving numerically the governing set
of non-linear equilibrium equations in a finite-element framework. The numerical results show good agreement with
experiments performed on thin polyethylene sheets. An idealized web bridge is then conceived of, in which the deck is
regarded as being sustained by an elastic membrane. A simple criterion is then used to pass from the continuous natural
wrinkled equilibrium configuration of the membrane to a discrete layout, formed by a cable net, exploitable in the
design of a real bridge. By changing the parameters controlling the shape of the web, various “optimal” cable ar-
rangements are determined. These turn out to resemble classical cable-stayed bridges or mixed suspended and cable-
stayed “hybrid” solutions. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Despite the importance of determining optimal structural shapes for bridges, just formulating the
problem presents formidable difficulties, because optimal solutions must simultaneously account for
economy, serviceability and (why not?) aesthetics as well. The underlying idea of this work consists of
seeking to determine optimal cable arrangements for typical tensile structures, such as cable-stayed or
suspension bridges, by drawing inspiration from the natural response of flat elastic membranes stretched in
their plane.

The approach stems from observations of the particular behavior of membranes. Because of their well-
known inability to locally sustain or transmit any bending or twisting couples, membranes show a char-
acteristic extensional response: whereas considerable stiffness is displayed under tension, when the sign of

*Corresponding author. Tel.: +39-521-905923; fax: +39-521-905924.
E-mail address: royer@dic.eng.unipr.it (G.F. Royer-Carfagni).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(01)00115-9



8832 R. Barsotti et al. | International Journal of Solids and Structures 38 (2001) 8831-8850

Fig. 1. Experimentally stretched rectangular membrane showing taut (7)), wrinkled (W) and inactive (/) regions.

the applied loads is reversed, the body buckles locally, as it is unable to withstand any compression. In
general, three different types of regions may appear in a stretched membrane. To illustrate, Fig. 1 represents
a thin rectangular polyethylene sheet, laterally clamped and subjected to a uniform vertical displacement
on the central portion of its base. Roughly speaking, some parts of the membrane are taut, that is, here a
biaxial state of tensile stress is present. In other parts, wrinkling may develop, i.e., there is only one non-
zero principal stress component, whose direction is indicated by the wrinkles. Finally, some other regions,
like the upper upside-down triangle-shaped portion of the membrane, are completely buckled and conse-
quently result inactive (or unstressed).

For our purposes, one peculiar consequence of the wrinkling phenomenon deserves remark: it can easily
be observed that wrinkles do not develop randomly throughout the membrane, but rather, their location
and orientation are, in fact, governed by a “maximum stiffness criterion”. In other words, amongst all the
possible wrinkle patterns that the membrane could develop to withstand the applied loads, it naturally (and
“intelligently’’, we might add) assumes the one that maximizes its overall extensional stiffness (Wagner,
1929; Timoshenko and Gere, 1961). This can be intuitively inferred from the reasoning first set forth by
Mansfield (1968). He observed that, because of the partial slackening, the state of stress in a wrinkled region
would not change if, there, the membrane were cut along the direction of the wrinkles themselves. In fact,
the loads are borne solely by tensile stresses acting precisely along the wrinkles, while, at right angles to
them, the stress state is zero. Therefore, provided the cuts are made in the correct places and directions, the
cut-membrane’s overall response to the same boundary conditions that brought on the original wrinkle
pattern will be the same as the intact one’s. On the other hand, if the membrane were cut differently, the
final stress state would differ from that of the intact one because the cuts are now incompatible with such
a state.

These properties, described here as per (Mansfield, 1968) by simply relying upon intuition and experi-
mental evidence, can be derived rigorously (Royer-Carfagni, 1999) in continuum-mechanics theories de-
veloped expressly to model wrinkling phenomenon (e.g. Tension Field Theory by Mansfield (1968)).

Such a noteworthy, “optimal”, response suggested the idea of applying these theories to studying the
behavior of an idealized “web bridge”’, whose deck is supported by an elastic membrane attached in various
ways to lateral pylons. The results of such analysis, in turn, lead to considering a “‘real bridge”, generally
a cable-stayed one, in which the deck is suspended to the lateral pylons by a set of stays. The optimal
arrangements for the real bridge stays can thus be inferred by examining the wrinkle patterns of the web-
bridge membrane, in response to vertical loads acting upon its deck. The criterion adopted for this consists
of the following. Obviously, no stays ought to be placed along the membrane’s slack portions. Secondly, as
it can be easily proved that, if the membrane’s own weight is negligible, the wrinkles will be straight lines
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Fig. 2. Possible cable arrangement deduced from the trial in Fig. 1.

(Stein and Hedgepeth, 1961), it immediately follows that straight cables can be positioned along the wrinkle
directions. Finally, the possible occurrence of taut regions suggests elements made up of by a net of cables,
which we imagine as placed according to the lines of principal stress. For example, considering the rect-
angular-membrane layout in Fig. 1, where all the three different types of regions are present (taut, wrinkled
and inactive), we would obtain the cable arrangement shown in Fig. 2.

In a recent paper (Royer-Carfagni, 1999), the case of a web bridge sustained by triangular-shaped
membranes was analyzed. However, a number of approximations were introduced there: wrinkling was
modeled using an approximate theory, specifically Tension Field Theory (Wagner, 1929; Reissner, 1938;
Kondo, 1938; Kondo et al., 1955), accurate only for completely wrinkled membranes. Moreover, pylons
were considered rigid and the bending stiffness of the deck was neglected. The aim of this paper is to de-
velop a more comprehensive and exhaustive analysis, and the membrane model used here is, consequently,
more extensive (Barsotti and Ligaro, 2000). In particular, an ad hoc version of the “relaxed strain energy”,
as proposed by Pipkin (1986), is presented in Section 2 in order to derive the correct equilibrium equations
for plane infinitesimal wrinkly elasticity (see also Steigmann and Pipkin, 1989a,b; Steigmann, 1990). This
approach has the considerable advantage that no a priori knowledge is required about the lines separating
the different region types (taut, wrinkled or inactive) resulting at equilibrium. Each solution, represented by
the stationary point of the modified (relaxed) total potential energy of the system, is found numerically by
means of an expressly developed finite element code (Section 3).

Web bridges sustained by triangular-shaped membranes are considered in Section 4. Numerical analysis
confirms that such membranes are wrinkled practically entirely, the corresponding wrinkle patterns being
in good agreement with those previously deduced in (Royer-Carfagni, 1999). For different ratios of tower
height to bridge length, what results from this unconventional approach are the classical fan, half-fan and
harp patterns of cable-stayed bridges. However, by simply varying the membrane contours, more elaborate
shapes may appear. In Section 5, we consider rectangular membranes, which instead generate all three
different region types. By following the aforementioned criteria, we obtain cable arrangements that reveal
remarkable similarities to some particular bridges, in which inclined stays collaborate with a suspension
cable in carrying the applied loads. Recent studies have demonstrated the great stiffness of these structural
schemes, which renders them particularly suitable for long-span railroad bridges.

2. The membrane model

Since the pioneering work by Wagner (1929), many attempts have been made to develop a theory
of wrinkle elasticity. A main difficulty of modeling consists in the fact that, as is simply confirmed by
stretching a swatch of cloth, even a very slight modification of the boundary conditions may produce
appreciable differences in the wrinkle exact location and wavelength. However, if the membrane has suf-
ficient extensional stiffness, some overall properties, such as the extent of the wrinkled regions and the
direction of the wrinkles, are practically not affected. Since in most applications it is enough to consider
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“smeared” wrinkles, many theories have been developed according to this line of reasoning, such as
Mansfield’s Tension field Theory (1968, 1970). However, in general, their range of application is limited to
those particular cases where the body is completely wrinkled at equilibrium. Wu (1974) and Wu and
Canfield (1981) advanced a more refined kinematical analysis, accounting for the possible co-existence
of inactive, wrinkled and taut zones; but a difficulty in this approach is determining the location of the
interfaces amongst the three different regions. A variational approach, inherently able to overcome this
obstacle, was later proposed by Pipkin (1986) in the framework of finite elasticity theory. This formulation
is very general, since only minimal assumptions for the membrane strain energy function, in particular its
quasi-convexity, are needed. The shape of this function is then deduced theoretically, using functional
analysis arguments.

Here, we propose an engineering approach to the same equilibrium problem, where the membrane is
treated as a von Karman plate endowed with negligible bending stiffness. The corresponding (relaxed)
strain energy is obtained applying Pipkin’s fundamental ideas, but now strictly keeping to classical
structural mechanics. It results a consistent linear-wrinkle-elasticity theory, particularly suitable for nu-
merical implementation, which satisfactorily describes the behavior of membranes endowed with consid-
erable extensional stiffness.

Consider a very thin membrane of constant thickness ¢, flat in its natural undistorted state and made of a
homogeneous, linear-elastic, isotropic material, with Young’s modulus £ and Poisson’s ratio v. Introduced
a rectangular co-ordinate system (O, x,y,z), let @ C R* represent the region of the (x,y) plane occupied by
the membrane’s mid-plane in its reference state. We denote u, v as the displacement components in the x
and y directions, respectively, and w as the out-of-plane displacement. If I' = 0Q is the boundary of Q, we
assume that the planar displacement field, u = #, v = 7, is assigned on a part I', of I', whereas the in-
plane edge-traction, t = [z, 7, O]T, acts on the remaining part, I', = I'\ T,

At equilibrium, because ¢ is so small, we may assume that a generalized plane stress state predominates
everywhere. Consequently, we neglect the displacement gradient in the z direction and consider u = u(x, y),
v =v(x,y) and w = w(x, y), where these quantities now present the through-the-thickness averaged values
of the related displacement components. In the following analysis, we confine our attention to cases in
which the membrane is highly stretched, but, because of the assumed considerable extensional stiffness,
functions u and v, along with their derivatives, remain quite small everywhere. On the other hand, in
wrinkled regions the transverse displacement w may experience high-frequency small-amplitude oscillations
(Jenkins et al., 1998). Thus, in order to consider the possibility of large rotations associated to small planar
displacements, we assume the von Karman’s strain tensor as a suitable measure of deformation. Conse-
quently, the relevant strain components take the form

e —a_u+l a_w ’ e —@+1 a_w ’ 28 — 1 —a_u+%+a_wa_w (21)

" 2\ax ) Ty 2\a ) T TR T T oy '
whereas

Yz = 05 V}z = Ov &z = _ﬁ (Sxx + 8}9})- (22)

A natural way exists to decompose the total strain (2.1). The quantities

Ou ov Ou Ov
Do P — 9P — P — T 7 2.3
T TR 1y’ o = T oy o’ 23)

define the “planar strain tensor”, &, whereas the remaining part

L L/oaw\® ., 1/ow\® ., Oowdw
Sxx_§<a> s (‘,}y—§<$> s bey—§a7 (24)
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due to the out-of-plane component w only, can be related to the wrinkle strain tensor, &*, proposed by Wu
(1974). We observe in passing that, since in Eq. (2.4) )&, — (e )‘j’y)z = 0, the strain state associate to Eq. (2.4)
is rank-one.

According to the aforementioned assumptions, we consider the membrane as a von Karman’s plate with
negligible bending stiffness. Consequently, its strain energy reduces to the extensional contribution

Et 1
Ule) = ) (sfx + &), + 2veaty, + TV ) (2.5)

2(1 =12 2

Using the decomposition, ¢ = &® + ¢, and following Pipkin’s ideas, a relaxed strain energy for the plate can
be defined. For any constant symmetric tensor &, we set

Urel (sp) =

A(la)) 1gf/w U(e’ + &%) da. (2.6)
Here, the infimum is to be taken for all bounded subsets @ C Q of area A(w), and for all symmetric positive
semi-definite tensors ¢V of the type (2.4). Such definition is remindful, in our model, of the quasiconvexity
condition of Morrey (1952). The function U, automatically accounts for the well-known property of the
membranes, i.e. the wrinkle strain ¥ “smartly” tends to accommodate the planar deformation in order to
lower the energy, wherever possible.

The expression (2.6) can be conveniently written by selecting the reference axes parallel to the principal
direction of the tensor &. Indicating with ¢} and &) its principal components, Eq. (2.5) becomes

Et I+v

U(e) =U(e" +&") = =) (& +81) + (& + a3)" + 2v(& + &) (5 + &%) + 2 &),

&}, &3, and &Y, being the components of the wrinkle strain tensor &* in the same reference system. Now, in
order to lower the energy, it is always convenient to choose &}, = 0, which means that s* and &" must be
coaxial. Thus, indicating with &} and &} the corresponding principal values of the wrinkle strain tensor &%,
we find

Et

s e &)+ (& +&y) + 2v(e] + &) (5 + &) (2.7)

Ue) =
Because of the symmetry of formula (2.7), without loosing generality, we discuss the case in which &} > &.
Thus, supposing w sufficiently regular, we distinguish two possibilities.

(i) Assume &} < 0. In the most general case, despite of the rank-one character of &, we may determine
(see e.g., Bhattacharya and Dolzmann, 2000) a sequence of piecewise-constant rank-one deformation
fields (representative, e.g., of a diamond-shaped bulging), (weakly) converging to a positive definite de-

formation field &" such that &} = —¢} and &) = —&5. Consequently, we obtain Uy = 0.
(i) Assume instead & > 0. The minimum of Eq. (2.7) is clearly obtained when &} =0 and
&) + &) = —ve}. But, since &) >0 in Eq (2.4), we can satisfy this condition only when & < —vel. If this

is the case, we find U (&}, &8) = Et(¢?)? /2. Otherwise, we cannot do any better but selecting &V = & = 0
and obtain U (", &0) = Et[(e0)” + (£8) + 2velel | /2(1 — v?).

We observe that, using the relaxed energy concept, we may analyze the equilibrium state of a membrane
independently of any knowledge of the field w. Indeed, in this theory, w remains undetermined, but the
effects of wrinkling and buckling are implicitly considered in the definition (2.6).

The physical interpretation of this finding is immediate. We classify portions of the membrane respec-
tively as taut, wrinkled or inactive (i.e., slack) provided that the point representative of their planar strain
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state belongs to one of the three regions T, W = W, U W, or I, defined in the principal-strain plane (O, &}, &b)
as

Ti={(e],68) € R* [} > —vé§ and &f > — vel}, (2.8a)
W= {(e},85) € R* |&f > 0and &) < —veb}, (2.8b)
Wr o= {(e},&)) € R* |&f > 0 and &) < —veb}, (2.8¢c)
1:={(&,e5) € R* |&} <0 and & < 0}. (2.8d)

Such regions are depicted in Fig. 3, which represents a linear version of the domain considered in (Pipkin,
1986). Expressions (2.8a)—(2.8d) can be easily interpreted introducing the natural (transverse) contraction
of the membrane, which is the linear form of the natural width concept proposed by Pipkin in finite
elasticity. For a strip of membrane, homogeneous and isotropic, under uniaxial tensile stress o, the natural

contraction is defined as ¢, = —ve;, where ¢; = o /E is the principal tensile strain.
Therefore, the relaxed strain energy may be written in the following form:
02 if("ﬁsﬁ)é[
Et (8119)2 ( 1762) € VVI
Urel(gIl)aSIz)) = ? (812)) (8 y & ) cw. (29)
(&)* + (8)* + 2vePed
G PB4 €
It follows that in a taut region 7, the state of stress is biaxial and takes the form
al]rel E aUrel E
o) = o =1 (e +ved) =0, o, = ok 1= (65 + vef) = 0. (2.10)

Both components are non-negative because, from (2.8a), we have & > — ve) and &) > — vel. Considering
the wrinkled region W; where & > 0, we find

aljrel al]rel
o) = o =Eef >0 and o, = o = (2.11)
& A

€1

v

Fig. 3. The three different types of membrane states in the (O, ¢}, &)) plane.
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Analogously in W, where & > 0, we obtain ¢; = 0 and g, = E¢5 > 0. Finally, within the inactive region 7, it
is a simple matter to show that ¢ = g, = 0.

Thus, the peculiarity of Eq. (2.9) is that compressive stresses never appear in the membrane. Buckling
and wrinkling phenomena are formally treated as a physical, rather than a geometrical, non-linearity. In
other words, the planar strain (2.3) becomes the only significant measure of deformation, since the wrin-
kling effects described by Eq. (2.4) are automatically considered through the strain energy density (2.9).

3. The solution procedure

In the following, for simplicity’s sake, we will omit the superscript ‘p’ in the expressions for planar strains
(2.3). For numerical implementation, it is necessary to derive the explicit expressions for the rectangular
stress components oy, g, and t,, within each different region. Thus, since from the chain rule

2
6Urel 6gk
= , 3.1
O-] ; aEk aCU ( )
we obtain in a taut region T’
E
Oy = T2 (e +Vey), 0y = T (& + Verr), Tup = I—nyy. (3.2)

When considering the wrinkled regions, without loosing generality, we may assume ¢; = &, so that W, is
never attained. Thus, introducing r = /(e — &,)° 4 72,/2, we find in the whole wrinkled region W

Ee¢; & — Epp Ee; &y — € )
= —|14+= ”}: cos’ o, :—[1— = W}: sin” o,
ow =5 (1475 d = 2 o
Ee; v, .
Ty = 2—: = oy sinocosa, (3.3)

where, as per (Mansfield, 1968), « is the angle that the tensile principal direction 1 forms with the x-axis.
We observe, in passing, that these formulas for stress in wrinkled regions coincide with those obtained by
Stein and Hedgepeth (1961). Finally, within the inactive region I, we have o, =0, 0,, = 0, and 7, = 0.

The expressions above can be more concisely written as ¢ = D¢, where o = [am [ ‘ny]T,
&= [&u, &, yxy]T, and D,y is one of the following matrices

£ 1 v 0
D’rl;l = Del = ﬁ v 1 0 in T, (343-)
Vo 0 1-v
g 14 (e — &)/2r) 0 Vo /4 .
D’ = 5 0 L+ ((ey —&w)/2r) 7, /4r | in W, (3.4b)
Y/ AT Vayl 47 1/2
D/, =0in /. (3.4c)

These formulas clearly evidence the stress dependence of the material’s extensional stiffness already pointed
out by Reissner (1938) and Mansfield (1968, 1970). As a consequence, the problem of finding the equi-
librium state of a partially wrinkled membrane is always highly non-linear.
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With the aim of using a FEM analysis, the entire region Q C R? is divided into a set of M plane iso-

parametric elements, w,,, m = 1,..., M, either triangular or quadrilateral in shape. Assuming bilinear in-
terpolation, for any given element we consider the displacement field
u(xay):N(xvy)'u7 U(x,y)ZN(x,y)-v, (35)

where N(x, y) is the vector collecting the interpolation functions, while the vectors u and v contain the nodal
displacement components in the x and y directions, respectively. The strain—displacement relations become

& ONT/ox 0" u u
o= a [ =| o x| [4] =Y, (3.6)
yxy aNT/ay aNT/@x

so that the 2N x 2N stiffness matrix for the mth element results to be

rel

K, — / B'D" Bdo. (3.7)

Here, D;;;, assumed constant within each element, is one of the three 3 x 3 material-stiffness matrices de-
fined in Eqgs. (3.4a)—(3.4c). In other words, the whole region covered by a single finite element is considered
to be entirely either taut or wrinkled or inactive. It follows that the serrated line, defined by element
boundaries, numerically approximates the interfaces between the different regions.

Indicating with q the vector collecting all the nodal displacements of the planar model, the governing set

of equilibrium equations is given by the stationary conditions for the functional

H(q) = Uri(q) _P(q), (38)

representing the total potential energy of the system. Now U, (q) indicates the relaxed strain energy derived
from Eq. (2.9), while P(q) represents the work of the external loads. Finding the stationary points of Eq.
(3.8) corresponds to solving the non-linear system of equations

2o = K@a-p=0, (3.9)

where K(q) = Y, Kk.(q) is the unknown secant stiffness matrix of the system and p = 0P/0q is the vector of
the external nodal loads. Proper boundary conditions need to be added.

The choice of the most convenient numerical procedure is based on the following observations.

The nature of the problem advises against the use of incremental methods, since the main unknowns (i.e.,
the separation lines between inactive, wrinkled and taut regions) depend upon the distribution and shape of
the applied loads, rather than upon their magnitude. In other words, if the loads were incremented pro-
portionally to the same parameter, the state of stress would be proportionally increased, but the location of
inactive, wrinkled and taut regions would be unaffected.

For the same reason, incremental-iterative methods (path-following strategies), using tangent-stiffness
matrices, may fail if, during the iterative process, some nodes turn out to be surrounded by elements of
inactive regions. In this case, in fact, the tangent-stiffness matrix becomes irremediably singular. Therefore,
numerical algorithms based upon Newton-Raphson schemes fail as soon as such a situation occurs
(Roddeman et al., 1987a,b; Kang and Im, 1997).

In order to solve the non-linear system (3.9), a modified Newton—Raphson strategy has instead proved to
be effective. Denoting with K, the global stiffness matrix corresponding to the ideal case in which the
membrane is taut everywhere, obtained through assemblage of matrices of the type (3.4a), we can write
Eq. (3.9) in the form

Kaq = (Ka — K(q))q + p. (3.10)
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From this, we derive the iterative scheme
q” =q" " +K;' [p—K(q"")g" "] (3.11)

At cycle n, the secant stiffness matrix K(q”~") is obtained from assembling the elemental stiffness matrices
(3.4a)—(3.4c), which are selected element-wise, according to the criterion (2.8a)-(2.8d), for the values
q = q" V. In other words, we find out which elemental matrix to use at cycle n from the planar strains
obtained at cycle n — 1.

The procedure (3.11) has considerable advantages. Not only is just one matrix inversion required, but
also, what is more important, the secant matrix K(q"~"), which may be singular, is never inverted. Roughly
speaking, the strategy consists in regarding the membrane as a plate, where tensile stresses may coexist with
compressive ones. In order to avoid this inconsistency, at cycle n we add to the real load p the relaxing
system of loads —K(q"~")q""). The magnitude of these loads is selected such to annihilate any com-
pressive stress active in the membrane at cycle n — 1. The accuracy of this procedure may continuously
be checked by evaluating the term |p — K(q"~")q"~"|, which indicates the “compression level” still present
in the membrane at the current stage. Convergence is achieved when

lq" — q" V| < Tol, (3.12)

where Tol > 0 is a chosen tolerance.

The inclusion in the model of linear-elastic beam elements to simulate the deck and pylons is straight-
forward provided that compatibility between beams and membrane elements is guaranteed. This is ob-
tained by requiring that displacements of common nodes to be equal, thus allowing the possibility of
relative rotation.

In Fig. 4a we represent the stress distribution for a membrane in the configuration of Fig. 1. The state of
stress is graphically represented by small crosses oriented according to the principal directions, with the
lengths of their arms drawn in a suitably proportional scale to the value of the principal components. In this

|
[
[[INNEN

| e

(b)

Fig. 4. (a) Membrane stress distribution and (b) deformed shape for the same boundary conditions as for the test in Fig. 1.
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way, those points where the membrane remains inactive can be easily recognized by the disappearance of
both arms of the cross. Moreover, in wrinkled regions the cross reduces to a single segment oriented
according to the only non-vanishing principal stress. In Fig. 4b, we also report the deformed shape of the
membrane. The effectiveness of the numerical procedure is confirmed by comparing the experimental results
of Fig. 1. with the numerical simulation represented in Fig. 4.

4. Triangular membranes

The parameters that influence the equilibrium state of a web bridge are numerous. Different kinds of
wrinkle patterns are obtained by simply varying the ratio between pylon height H and bridge length L, and
even more so, by altering the initial shape of the elastic membrane. In order to address the various possible
situations systematically, we begin, as a first approximation, by neglecting the deformation of the pylons.
Thus, we consider the case in which two right-angled triangular membranes, clamped on the vertical side
and free on the oblique sides, are connected to a flexible beam on their horizontal edge, according to the
scheme of Fig. 5. For convenience, and without loosing generality, we consider the case in which both the
membranes and the beam are made of the same homogeneous, elastic, isotropic material, for which we set
E =2.1 x 10° MPa and v =0.1. Our aim is to find the equilibrium state of the system when a uniformly
distributed vertical load ¢ acts on the deck, represented by the horizontal beam. Four parameters will be
considered as variables in the analysis: the height of the pylons H, the clear span of the bridge L, the
thickness of the membrane ¢, and the moment of inertia J4 of the deck’s cross-section. It may be worthwhile
to recall that when body forces are negligible, the lines of the non-zero principal stress are straight (hence
Wagner’s denomination of tension rays (Mansfield, 1968)) and coincide with the direction of the wrinkles in
the membrane.

The situation described in Fig. 5 is similar to that discussed in Royer-Carfagni (1999), where an ap-
proximate explicit solution was found for the borderline case of an extremely flexible beam (J3 — 0). Under
this approximation, the membrane results completely wrinkled. In order to make comparisons between the
results obtained therein and this more accurate numerical analysis, we shall assume ¢t = 1 cm and a very
small deck inertia (J3 = 0.01 m*). We then consider four different situations, corresponding to the ratios
H/L=0.25,0.5, 1, and 2. The resulting stress distributions are reported in Fig. 6, where the reaction forces
of the pylons have also been illustrated. In this situation, according to our expectation, the membrane turns
out to be practically completely wrinkled.

In order to design a real bridge according to the criteria presented in the Introduction, we consider the
cable arrangement obtained by placing cables along the tension rays. By selecting those rays whose in-
tersection points with the horizontal beam are nearly equidistant, we obtain the schemes reported in Fig. 7,

Fig. 5. Static scheme for a web bridge with triangular membranes and rigid pylons.
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Fig. 6. Influence of the ratio H/L on the stress distribution within the membrane. L = 100 m, J4 = 0.01 m*, t = 1 cm. (i) H/L = 0.25,
(i) H/L = 0.5, (iii) H/L =1 and (iv) H/L = 2.

which reproduce the classical arrangements of cable-stayed bridges. More in particular, when H/L = 0.5,
the membranes are half squares, and the tension rays tend to become almost parallel, resembling the
classical harp pattern. As the ratio between the pylon height and bridge clear span is reduced, the rays tend
to converge at the upper vertex, thus reproducing the traditional half-fan scheme (see case i) in Fig. 6.

It should be clear from Fig. 6(iv) that when the height of the membrane is greater than its length
(H/L > 1), its uppermost parts result only slightly stressed, suggesting that these portions play a secondary
role in sustaining the applied loads. In other words, increasing the height of the pylons beyond a certain
limit is unlikely to produce any appreciable increase in the bridge stiffness. In order to delve into this point
further, let us introduce the quantity

2L2
K = 9
2tEU,q

where U, represents the strain energy stored in the membrane. Clearly, x is dimensionless, and the greater
its value, the greater will be the average stiffness of the web bridge. In Fig. 8, k is plotted as a function of
H/L for fixed L =100 m, t = 1 cm and Jy = 0.1 m*. The graph exhibits a horizontal asymptote for large
H/L, a finding that confirms our conjecture that the material is not fully exploited by increasing the height
of the pylons beyond a certain limit.
More in detail, we may consider the specific average stiffness, «*, defined as
272
L_k_ gL
=—=— 4.2
N T AT uEAU, (4.2)
where A4 represents the total area of the membrane. The graph of x*, reported in Fig. 9, reaches a maximum
at H/L = 0.5, suggesting this as the optimal ratio between pylon height and bridge length.

(4.1)
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@ (i)

(iii) (iv)

Fig. 7. Various stay arrangements resulting from the cases in Fig. 6. (i) H/L = 0.25, (ii) H/L = 0.5, (iii)) /L =1 and (iv) H/L = 2.
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Fig. 8. Average stiffness x of the web bridge as a function of the ratio H/L for varying H and fixed L = 100 m, ¢t = 1 ¢m, Jg = 0.1 m*,
Loads are considered uniformly distributed on the deck.
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Fig. 9. Specific average stiffness «* of the web bridge as a function of the ratio H/L for L = 100 m, ¢ = 1 cm, J4 = 0.1 m*. Loads are
considered uniformly distributed on the deck.

In the foregoing cases, the bending stiffness of the deck is very small in comparison to that offered by the
membrane. Other numerical simulations have shown that the wrinkle pattern is practically unaffected by
varying the beam inertia. In rough terms, the wrinkle pattern depends upon the shape rather than the
amplitude of the inflection line of the beam, which is only marginally influenced by the inertia of the cross-
section. However, the stress state in the membrane changes significantly because the stiffer the beam, the
greater is the load portion it sustains.

We now turn to the slightly different situation in which the membrane is partially disconnected from
the pylons and/or the beam (Fig. 10). This case aims to represent those circumstances in which, due to some
design requirement, the stays cannot be connected to some portions of the pylons and/or deck. With the
same notation as Fig. 10, Fig. 11 refers to different H,/H and L, /L ratios. Predictably, the presence of cuts
now constrains the pattern of the tensions rays which, for H;/H — 1, resembles the classical fan pattern of
a cable stayed bridge. Moreover, membrane portions, in proximity of the disconnected sides, remain
practically inactive.

The stay arrangements that can be obtained from the cases considered in Fig. 11 are illustrated in Fig.
12. If stays were placed according to the resulting tension-ray pattern, the classical half-fan arrangement
would result.

Higl
Ve

At L

AL L

Fig. 10. A membrane partially disconnected from pylons and/or deck. Case H/L = 0.25.
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(iii) (iv)

Fig. 11. Membrane equilibrium states when partially disconnected. Case H/L =0.25, L=100 m, t=1 cm, Jg = 15.5 m*.
(i) Hi/H=0.5and L,/L =0, (ii) H;/H = 0.5 and L, /L = 0.25, (iii) H,/H = 1.0 and L, /L =0, (iv) H;/H = 0.5 and L, /L = 0.5.

N o

Fig. 12. Cable arrangements resulting from partial disconnection of the membranes from pylons and deck. Same cases as in Fig. 11.

(iii) (iv)

The case L, /L — 0.50 is representative of a pin-connection of the membrane to the midpoint of the deck
beam. In such a situation, the tension rays are forced to depart from this point. The resulting arrangement
is, as expected, of the type represented in Fig. 12(iv).

5. Rectangular membranes

Completely different wrinkle patterns can be obtained by simply changing the shape of the membrane.
While once again neglecting deformation of the pylons, we now consider web bridges supported by rect-
angular-shaped membranes. The problem reduces to that depicted in Fig. 13. The membrane and beam
deck are made of the same elastic, homogeneous and isotropic material (E = 2.1 x 10° MPa and v = 0.1), as
in the foregoing examples.

Fig. 14 schematically again represents the equilibrium state corresponding to = 1 cm and J4 = 0.01 m*
for four different H/L ratio values, i.e., H/L =0.25, 0.5, 1 and 2. The main difference from the cases
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Fig. 13. Web bridge with rectangular-shaped membrane and rigid pylons.
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Fig. 14. Influence of the ratio H /L on the stress distribution within the membrane. L = 100 m, J; = 0.0l m*, ¢t = 1 ecm. (i) H/L = 0.25,
(i) H/L = 0.5, (iii) H/L = 1 and (iv) H/L = 2.
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considered in Section 4 is that the three different regions, i.e., taut, wrinkled and inactive, now occupy
comparable areas. The taut-region contours have been highlighted in the illustrations. Inactive regions are
present in correspondence to the upper free edge of the membrane.

Establishing a correspondence between the current stress distribution and possible cable arrangements
is more difficult. We place cables along the lines of principal stress in the taut region and maintain the
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Fig. 15. Cable arrangements for the cases in Fig. 14. L = 100 m, J; = 0.0l m*, ¢t = 1 ecm. (i) H/L = 0.25, (ii) H/L = 0.5, (iii)) H/L = 1
and (iv) H/L = 2.

criterion of placing cables along the tension rays in the wrinkled zones. Fig. 15 presents the arrangements
resulting for the cases shown in Fig. 14. Now, inclined straight stays sustain the deck in the neighborhood
of its extremities, while a cable net upholds the bridge’s middle section. This layout recalls some mixed
suspended cable-stayed bridges which, according to the systematic studies of Dischinger (1949), were
considered to be the most convenient solutions for long-span railroad bridges.

Figs. 16 and 17 again underscore that increasing the membrane’s height does not necessarily imply any
significant benefit in terms of stiffness. Here, the average stiffness k and the specific average stiffness x*,
defined as in Egs. (4.1) and (4.2), respectively, are reported as a function of H/L. As before, the graph in
Fig. 16 tends towards a horizontal asymptote for H/L — oo. Moreover, Fig. 17 reveals the same optimal
value H/L = 0.5, corresponding to the case in which the capacity of the membrane is fully exploited.

Naturally, the patterns obtainable when the membrane is partially disconnected from either the beam or
pylons are practically innumerable. With the aim of comparing it to Fig. 10, we consider the scheme in Fig.
18. The four cases represented in Fig. 19 show how the tension rays are influenced by the presence of cuts.
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Fig. 16. Overall stiffness of the web bridge as a function of the ratio H/L for varying H and fixed L = 100 m, ¢ = 1 cm, J4 = 15.5 m*.
Loads are considered uniformly distributed on the deck.
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Fig. 17. Specific overall stiffness of the web bridge as a function of the ratio H/L.

As before, the contours of the taut region have been highlighted. For H;/H — 1, the stayed portion re-
sembles a fan arrangement. An additional cut of length L; near the beam’s ends produces the formation of
triangular inactive regions, equal to those discussed in the corresponding cases in Section 4. However, the
presence of the taut zone now yields a hybrid solution, i.c., a mixed suspended and cable-stayed bridge.
Such cable arrangements are represented in Fig. 20.

It seems particularly worthwhile to point out the difference between Figs. 12(iv) and 20(iv). Both
correspond to H;/H = 0.5 and L,/L = 0.5, but the former refers to a triangular membrane, while in the
second the membrane is rectangular. In both cases, the tension rays are forced to originate at the beam
midpoint; however, the presence of a taut zone in the rectangular membrane (Fig. 19(iv)) drives the inclined
cables to become approximately parallel.
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Fig. 18. The case of membranes partially disconnected from pylons and/or deck. Case H/L = 0.25,L = 100 m, ¢t = 1 cm, J4 = 0.01 m*.

(iv)

Fig. 19. Equilibrium states of the membrane when partially disconnected near the base of the pylons and along the beam. Case
H/L=025L=100m, t=1cm, Js = 0.0l m*. (i) H,/H =0.5 and L,/L =0, (i) H;/H = 0.5 and L,/L = 0.25, (iii) H,/H = 1 and
Li/L=0, (iv) H/H=0.5and L;/L=0.5.
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Fig. 20. Cable arrangement resulting from membranes partially disconnected from pylons and deck. Same cases as in Fig. 12.

6. Conclusions

Although the few cases analyzed herein hardly constitute exhaustive treatment, the results obtained
provide support for the soundness of the approach. Taking inspiration from the natural wrinkling behavior
of membranes to find efficient cable arrangement for tensile structures appears quite promising, and we
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believe its full potential remains yet to be realized. The fact that the membrane stress can only be tensile,
and that wrinkles, if any, develop “intelligently”’ according to a “maximum stiffness” criterion, furnish the
justification for the proposed procedure that will hopefully prove quite valuable in bridge design.

The main contribution of the present work consists in having identified a theory and developed a finite-
element code to describe and calculate the response of elastic membranes under the most varied boundary
conditions. The difficult task of identifying the boundary between taut, inactive and wrinkled regions has
been overcome through an engineering approach, relying on Pipkin’s relaxed energy concept. We have thus
been able to analyze relevant cases of bridge design by conceiving of an idealized web bridge, in which the
deck is hung on pylons through membranes of different types, essentially triangular or rectangular shaped.
The accurate numerical solutions so obtained show good agreement with former approximate ones, con-
firming that triangular membranes turn out to be nearly entirely wrinkled when loads act on the deck.
Moreover, in considering the efficiency of such web bridges, we have arrived at a value of 0.5 for the
optimal ratio between pylon height H and total length of the bridge’s main span L. In other words, when
H/L = 0.5, the material making up the membrane is fully exploited, at least with respect to the stiffness
of the bridge. In addition, by virtue of the more sophisticated analysis method, we have been able to solve
more complex cases. In particular, the analysis of web bridges supported by rectangular shaped membranes
reveals the co-existence of all three different possible types of membrane static equilibrium configurations
(taut, wrinkled and inactive). As in the triangular membranes, the optimal H /L ratio for rectangular
membranes turns out to be 0.5.

Starting with the membrane equilibrium configurations, we have envisaged cable arrangements where
rectilinear cables are placed along the direction of the wrinkles, while a cable net, disposed along the lines of
principal stress, better interprets the taut regions. An interesting finding is that when triangular-shaped
membranes are considered, the resulting cable arrangements are the same as in classical cable-stayed
bridges. On the other hand, as rectangular membranes are always taut at the midpoint of the central span
(at least for uniformly loaded deck), here the web-bridge solution suggests to use a cable net, where a
secondary set of cables is placed at right angle to the principal stays. The resulting cable arrangements show
surprising similarities with “hybrid”, mixed suspended and cable-stayed solutions, which have been proved
to be particularly efficient for long-span bridges subjected to heavy traffic loads. The fact that the shapes
obtained via the membrane criterion result similar in type to the classical ones, obtained through long
design experience and study, is very encouraging for further studies. As a final point, it may be curious to
mention that, based on purely aesthetic considerations, the famous architect Frank Lloyd Wright once
designed two bridges sustained by a cable net for the city of Pittsburgh (Riley and Reed, 1994, pp. 284-285).
The designs for those bridges (which were never built) show some resemblance to the arrangements dis-
cussed in Section 5, where the cable arrangements were based on the web-bridge analysis.
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